

- 1. What is an ionic compound?
- 2. Describe the formation of an ionic bond.
- 3. Explain the octet rule and its relationship to noble gas configurations.
- 4. Write the electronic configuration of the following ions:

a.
$$N^{3-}$$
 b. Cr^{3+}

- 4b. For each of the ions below write out the electronic configuration in terms of sub-shells.
- i. Na and Na⁺ ii. Cl and Cl⁻ iii. Al and Al³⁺ iv. O and O^{2-}
- 5. Write the formula for the following compounds:
- a. sodium oxide b. Ma
 - b. Magnesium nitride
- c. aluminium oxide

- d. iron(III) oxide
- e. Tin (IV) chloride
- f. calcium chloride

- g. copper(I) oxide
- h. copper(II) oxide

6. Draw dot and c	ross diagr	rams to show bonding in:		
a. aluminium chloride	;	c. Magnesium oxide		
7. Write a short sen	tence to e	explain the meaning of the following:		
i. a cation i	i. an anioi	n iii. an ionic bond		
iv. electrostatic attraction				
8. Outline some of	the limita	ations of the octet rule, providing examples.		
9. Determine the formula of the following ionic compounds:				
i. Sodium oxide:	ii.	Magnesium chloride:		
iii. Aluminium nitri	de: iv.	Calcium sulfide:		
v. Potassium brom	ide:			
10. Which of the following is NOT an ionic compound?				
A) Sodium chloride (NaCl)	B) Carbon dioxide (CO2)		
C) Magnesium oxide ((MgO)	D) Potassium iodide (KI)		

11.	Complete the following sentence by filling in the gaps:				
	Ionic compounds generally have	_ melting and boiling points due			
	to the strong electrostatic forces between	ions.			
12.	Use the table below to compare and contrast	ionic and covalent bonding.			

Feature	Ionic Bonding	Covalent Bonding
Bond		
formation		
Particles		
Bond strength		
Physical state		
Conductivity		

13. A student claims that an ionic compound formed between magnesium and nitrogen would have the formula MgN. Explain why this is incorrect and determine the correct formula.

Answers

What is an ionic compound?

An ionic compound is a chemical compound formed by the electrostatic attraction between oppositely charged ions.

2. Describe the formation of an ionic bond.

An ionic bond is formed when a metal atom transfers one or more electrons to a non-metal atom. The metal atom becomes a positively charged cation, and the non-metal atom becomes a negatively charged anion. The oppositely charged ions are attracted to each other, forming an ionic bond.

3. Explain the octet rule and its relationship to noble gas configurations.

The octet rule states that atoms tend to gain, lose, or share electrons in order to achieve a stable electron configuration with eight electrons in their outermost energy level. Noble gases have full outer energy levels, with eight electrons (or two for helium), and are therefore stable.

4. Write the electronic configuration of the following ions:

a.
$$N^{3-}$$
 b. Cr^{3+} c. Cl^{-} d. Ca^{2+}

a.
$$N^{3-}$$
 1s²2s²2p⁶ or [He] 2s²2p⁶

c.
$$Cl^{-1}$$
 1s²2s²2p⁶3s²3p⁶ or [Ar]

d.
$$Ca^{2+}$$
 1s²2s²2p⁶3s²3p⁶ or [Ar]

- b. For each of the ions below write out the electronic configuration in terms of subshells.
- i. Na and Na⁺ ii. Cl and Cl⁻ iii. Al and Al³⁺ iv. O and O^{2-}
 - Na and Na+ 1s²2s²2p⁶3s¹ and 1s²2s²2p⁶
 - ii. Cl and Cl⁻ $1s^2 2s^2 2p^6 3s^2 3p^5$ and $1s^2 2s^2 2p^6 3s^2 3p^6$
 - iii. Al and Al3+ $1s^22s^22p^63s^23p^1$ and $1s^22s^22p^6$
 - iv. O and O^{2-} 1s²2s²2p⁴ and 1s²2s²2p⁶

You could also write shortened electronic configurations based on the noble gas configurations; I have done this for some of the answers below.

- Write the formula for the following compounds: 5.
- a. sodium oxide
- b. Magnesium nitride c. aluminium oxide

- d. iron(III) oxide e. Tin (IV) chloride f. calcium chloride

- g. copper(1) oxide h. copper(11) oxide
 - a. sodium oxide Na₂O
- b. Magnesium nitride Mg₃N₂
- c. aluminium oxide Al_2O_3 d. iron(III) oxide Fe_2O_3
- e. Tin (IV) chloride SnCl₄ f. calcium chloride CaCl₂
- g. copper(I) oxide Cu_2O h. copper(II) oxide CuO

- 6. Draw dot and cross diagrams to show bonding in:
- a. aluminium chloride
- c. Magnesium oxide

- 7. Write a short sentence to explain the meaning of the following:
- a. a cation -a positively charged ion.
- b. an anion -a negatively charged ion.
- c. an ionic bond -electrostatic attraction of oppositely charged ions.
- d. electrostatic attraction attraction between + and charges/ions.
- 8. Outline some of the limitations of the octet rule, providing examples.

The octet rule has limitations:

Some elements, such as hydrogen and lithium, can be stable with only two electrons.

Elements in periods 3 and below can accommodate more than eight electrons in their outer energy level due to the availability of d orbitals. Examples include sulfur hexafluoride (SF_6) and phosphorus pentachloride (PCl_5). Many transition metal compounds are fully stable with more or less than eight electrons in their valence shell.

9.	Determine the formula of	the fo	llowing ionic compounds:			
i.	Sodium oxide: Na ₂ O	ii.	Magnesium chloride: MgCl2			
iii.	Aluminium nitride: AlN	iv.	Calcium sulfide: CaS			
<i>V</i> .	Potassium bromide: KBr					
10.	10. Which of the following is NOT an ionic compound?					
A) 5	Sodium chloride (NaCl)	B) C	arbon dioxide (CO2)			
C) Magnesium oxide (MgO) D) Potassium iodide (KI)						
Ans	wer: B) Carbon dioxide (CC	92)				
11.	Complete the following ser	rtence	by filling in the gaps:			
	Ionic compounds generall	y have	melting and boiling points due			
	to the strong electrostatic	forces	betweenions.			
	•		ally have high melting and boiling points due			
	to the strong electrostatic	torces	between oppositely charged ions.			

12. Compare and contrast ionic and covalent bonding.

Feature	Ionic Bonding	Covalent Bonding
Bond formation	Transfer of electrons	Sharing of electrons
Particles	lons	Atoms
Bond strength	Strong	Generally weaker
Physical state	Usually solid	Can be solid, liquid, or gas
Conductivity Good conductors when molten or dissolved		Poor conductors

13. A student claims that an ionic compound formed between magnesium and nitrogen would have the formula MgN. Explain why this is incorrect and determine the correct formula.

The student's claim is incorrect because magnesium forms Mg^{2+} ions, and nitrogen forms N^{3-} ions to achieve stable electron configurations. To balance the charges, three magnesium ions are needed for every two nitrogen ions. Therefore, the correct formula is Mg_3N